УДК: 631.3.; 631.331.

ВЛИЯНИЕ КОМБИНИРОВАННОГО ПОСЕВНОГО АГРЕГАТА НА ВСХОДЫ И РАЗВИТИЕ ХЛОПЧАТНИКА

Атаниязов А.С

Заведующий лабораторией «Механизация сельского хозяйства» Каракалпакского научно исследовательского института земледелия (ККНИИЗ).

Бердикеев Б.Б

Ученый секретарь Каракалпакского научно исследовательского института земледелия (ККНИИЗ).

Жуманазаров Д.Б

студент Каракалпакского института агротехнологии сельского хозяйства. Узбекистан, Республика Каракалпакстан, Чимбайский район, ККНИИЗ.

Annotation: Sowing with a combined unit allows you to get full seedlings at 3.8 pcs / r.m. more than sowing with a conventional cultivator. According to phenological observations, the use of a combined aggregate also has a positive effect on the growth, development and accumulation of fruit elements.

Применяемая техника и сеялки в посевах сельхоз культур, часто не создают оптимальных условий прорастания семян, при которых они обеспечивались бы необходимым количеством тепла, влаги и воздуха [1].

Наряду с этим при существующей технологии сева в условиях Каракалпакстана образуется почвенная корка после весенних ливневых осадков и создает дополнительные трудности, препятствует получению полноценных всходов, иногда полностью уничтожает их.

В таких условиях для качественного выполнения этих операции необходимо разработать и внедрять технологию посева пропашных сельхоз культур с использованием комбинированного универсального агрегата, совмещающего операции посева и внесение жидкого удобрения, гербицида, которые повышают влаги в почве и при этом экономят значительные материальные ресурсы [2; 3].

Цель настоящего исследования - усовершенствование существующего посевного агрегата хлопчатника, обеспечивающая нормальное отрастание и роста молодых растений в экстремальных условиях Каракалпакстана.

На основе серийного пропашного культиватора КХУ-4 нами разработан комбинированный посевной агрегат, совмещающий три операции: посев, увлажнение и мульчирование почвы. Разрабатываемый способ осуществляется путем совмещения операции, обеспечивает качественный посев во влажный слой без разрушения сухой части почвы, увлажнение смесью жидкого удобрения или гербицида и мульчирование высеваемого рядка.

Задача достигается тем, что на пропашной трактор с культиватором КХУ-4 навешивается емкость и шланги от ОВХ-4. Все секции культиватора переставляется над четырьмя рядками и на передние грядили устанавливается сошники сеялки, на задние грядили наконечники шланг, тукопроводы, загорточи и прикатки хлопковой сеялки, на раму устанавливается емкость для навоза с высевающим аппаратом. Привод движения получает от бокового вала отбора мощности.

За годы исследования по темпу появления всходов хлопчатника, росту и развитию выявлены различия между вариантами в зависимости от нормы мульчи и условий увлажнения, т.е. чем больше норма, тем интенсивнее всходы (с увлажнением перед катком), выше высота главного стебля и больше коробочек.

Наблюдения за динамикой появления всходов хлопчатника провели в четыре срока. Результаты наблюдения за всходами хлопчатника свидетельствуют о наличии различия между вариантами в зависимости от нормы мульчи и условий увлажнения, т.е. чем больше норма, тем интенсивнее всходы (с увлажнением перед катком) по сравнению с контрольным вариантом.

Фенологические наблюдения за ростом и развитием хлопчатника показывают увеличение высоты главного стебля с увеличением нормы мульчи. Наилучший рост и большое накопление коробочек наблюдались в 4, 5 вариантах, где увлажнение проводился перед катком, и норма мульчи составила 2 кг/п.м. Здесь высота главного стебля была наибольшая (63,7-64,3 см), а количество коробочек 11,9-12,9 шт. на одном растений (таблица 19). Следует отметить, что внесение навоза обуславливает заметное ускорение фаз развития хлопчатника.

Густота стояния растений в конце вегетации была в пределах 87-90 тыс.шт/га. Между вариантами большое различие по густоте не было.

Показатели высоты главного стебля были наибольшими (61,3-64,3 см), а количество коробочек 6,3-12,9 шт. на одном растении, т.е. больше на 0,4-2,2 шт., по отношению контроля. Наблюдения за темпами фаз развития хлопчатника показывают, что в вариантах с покрытием навоза (мульча) создаются условия аккумулирования больше теплоты в почве и ускорения фаз развития хлопчатника.

Как показывает наблюдения за динамикой цветения и созревания хлопчатника, также выявлены тенденция зависимости этих фаз от нормы мульчирования и от уплотнения почвы при применении комбинированного агрегата. Наибольшие показатели цветения и созревания отмечены в вариантах, где норма мульчи составила 2кг/п.м. и плотность почвы в пределах 1,13-1,20 г/см3. В этих вариантах созданы оптимальные условия для процесса цветения, созревания, чем в контрольном варианте.

По наблюдениям фенологическим видно, что применение комбинированного агрегата также влияет положительно на рост, развитие и накопление плодоэлементов. По сравнению с посевам обычном культиватором (CXY-4). наилучший рост И наибольшее накопления плодоэлементов наблюдалось при посеве с комбинированным агрегатом. Здесь высота главного стебля была равна 63,7-64,3 см., число коробочек 11,9-12,9 шт., что соответственно выше на 1,5 см и больше 2,2 шт., на одно растение.

Обобщая полученных данных можно отметить, что посев комбинированным агрегатом позволяет получить полноценные всходы на 3,8 шт/п.м. больше, чем посев обычным культиватором.

Влияние комбинированного посевного агрегата на всходы, густоты стояния, роста и развити	ие хлопчатника

	Варианты за, се	Глубина Увлажн заделки ение семян, см		1 1	Темпы появления				Рост и развитие хлопчатника				Густота стояния (на 1.Х.)
№			расхода мульчир ования, кг/н.м	всходов хлопчатника (в среднем на 1 п.м.)				Высота главного стебля, (см)		Число коробочки, (шт)			
					2.V	15.V	18.V	21.V	1.VII	1.VIII	1.VIII	1.IX	
1	Контроль (обычным посевным агрегатом)	5 <u>+</u> 1	-	-	3,8	7,0	11,1	14,6	25,4	62,8	5,9	10,7	87,2
2	Посев комбинированным агрегатом	5 <u>+</u> 1	После катка	1,0	4,6	7,2	11,6	15,6	22,1	62,4	5,7	11,4	87,6
3	Посев комбинированным агрегатом	5 <u>+</u> 1	После катка	2,0	4,9	7,1	12,5	17,4	24,3	63,1	5,7	11,7	89,1
4	Посев комбинированным агрегатом	5 <u>+</u> 1	Перед катком	2,0	4,8	8,7	12,6	18,4	23,5	63,7	6,4	11,9	88,2
5	Посев комбинированным агрегатом	4 <u>+</u> 1	Перед катком	2,0	5,9	8,9	14,4	18,6	23,6	64,3	6,4	12,9	90,7
6	Посев комбинированным агрегатом	4 <u>+</u> 1	Перед катком	2,5	5,9	8,8	13,9	17,8	25,6	62,3	6,4	11,2	89,7

Оптимальные условие в почве созданные комбинированным агрегатом способствовали повышению урожайности хлопчатника до 25-30%, по сравнению с обычным севом.

Внедрение нового комбинированного посевного агрегата в сельскохозяйственное производство позволяет сэкономить средства на 20-30%. Поэтому целесообразно внедрить его в дехканско-фермерских хозяйствах, занимающихся возделыванием хлопчатника.

ЛИТЕРАТУРЫ:

- 1. Абдумуталов А.Ю. Исследование заделывающих прикатывающих рабочих органов хлопковых сеялок. Ташкент, Гос. изд. Узб.Т.1984 г.
- 2. Перспективные технологические основы механизации сева хлопчатника. Ташкент, Фан, 1984 г.

3. Рудаков Г.И. Технологические основы механизации сева хлопчатника. Ташкент, изд. Фан, 1974 г.