UNVEILING THE COSMOS: THE PIVOTAL ROLE OF MATHEMATICAL STATISTICS IN ASTRONOMY
Ключевые слова:
Mathematical Statistics. Astronomy. Data Analysis. Observational Astronomy. Noise Reduction. Regression Analysis. Cosmic Evolution. Big Data Astronomy. Sloan Digital Sky Survey (SDSS). Legacy Survey of Space and Time (LSST). Bayesian Statistics. Cosmological Parameters. Universe Exploration. Statistical Modeling.Аннотация
The exploration of the universe, with its inherent complexities and vast scales, demands the integration of various scientific disciplines. Among these, mathematical statistics plays a crucial and often underappreciated role in the field of astronomy. This article delves into the symbiotic relationship between mathematical statistics and astronomy, illustrating how statistical methods are indispensable in processing, analyzing, and interpreting astronomical data. From the foundational tasks of noise reduction and data processing to the sophisticated analyses required for understanding cosmic evolution and the large-scale structure of the universe, statistical techniques are at the forefront of astronomical discovery. The article highlights key applications of statistics in astronomy, including regression analysis, the analysis of the large-scale structure through statistical methods, the impact of the big data era on astronomy marked by projects like the SDSS and LSST, and the estimation of fundamental cosmological parameters using Bayesian statistics. As we stand on the brink of new astronomical frontiers, enabled by advances in observational technologies and data analysis methodologies, the role of mathematical statistics in deciphering the cosmos is more pivotal than ever. This exploration underscores the transformative impact of statistical methodologies on our understanding of the universe, promising to propel our comprehension of the cosmos to unprecedented heights.
Библиографические ссылки
Rayimbaev J. et al. Test Particles and Quasiperiodic Oscillations around Gravitational Aether Black Holes //Galaxies. – 2023. – Т. 11. – №. 5. – С. 95.
Abdushukurov A. A., Holmurodov F. M. Semi-Parametric Estimator of the Quantile in an Informative Model of Random Censoring //Journal of Mathematical Sciences. – 2022. – Т. 267. – №. 1.
Xolmurodov M. Q., Xolmurodov F. M. ILMIY TADQIQOTLARDA STATISTIK TAHLIL //" ONLINE-CONFERENCES" PLATFORM. – 2021. – С. 195-200.
Kholmuradov F. M. ASYMPTOTIC PROPERTIES OF SEMI-PARAMETRIC ESTIMATION FROM QUANTILE FUNCTIONS IN THE MODEL OF RANDOM CENSORING FROM BOTH SIDES //Scientific and Technical Journal of Namangan Institute of Engineering and Technology. – 2020. – Т. 2. – №. 3. – С. 21-27.
Beknazarov Z. B., Nurmatov Y. M. H., Kholmurodov F. M. New Method of Urethral Valve Surgery in Children //International Journal of Biomedicine. – 2013. – Т. 3. – №. 2. – С. 100-103.
Холмуродов Ф. М. Процентная остаточная продолжительность безотказной работы в информативной модели неполных наблюдений при случайном цензурировании с двух сторон //Труды XI международной ФАМЭБ’2012 конференции. Под ред. Олега Воробьева.—Крас-ноярск: НИИППБ, СФУ, 2012.—423 с. – Красноярский государственный торгово-экономический институт, 2012. – С. 372.
Абдушукуров А. А., Холмуродов Ф. М. Полупараметрическая оценка квантили в информативной модели случайного цензурирования //СТАТИСТИЧЕСКИЕ МЕТОДЫ ОЦЕНИВАНИЯ И ПРОВЕРКИ ГИПОТЕЗ. – 2011. – С. 144-151.
Абдушукуров А. А., Холмуродов Ф. М. Оценивание квантильной функции в информативной модели случайного цензурирования с двух сторон //Статистические методы оценивания и проверки гипотез. – 2012. – С. 40-45.
Zaxidov D., Xolmurodov F. IJTIMOIY TARMOQLAR JAMOALARINI ANIQLASHDA MAKSIMAL HAQIQATGA O’XSHASHLIK METODINI QO ‘LLASH //Евразийский журнал математической теории и компьютерных наук. – 2022. – Т. 2. – №. 6. – С. 29-33.