СТАРИННЫЕ ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ГЕОМЕТРИИ

Мадрахимов Т

Ургенчский государственный университет, г. Ургенч

Развитие человечества — это, прежде всего, развитие человеческой мысли. И история геометрии является своего рода зеркалом истории развития человеческой мысли, удивительной сокровищницей, хранящей высшие достижения человеческого гения, жемчужины, которой создавались величайшими мыслителями.

В данной статье предлагается несколько интересных, занимательных задач из старинных русских рукописей, а также задачи мыслителей Древнего Востока.

1. Лестница вокруг башни.

Имеются две круглые башни одинаковой высоты, но разного диаметра. Вокруг каждой из них идет винтовая лестница, причем угол наклона каждой из лестниц к горизонту везде постоянен и одинаков для обеих башен. По какой из лестниц путь к верхней площадке башни длиннее: по той, у которой диаметр больше, или наоборот?

Ответ: Обе лестницы имеют одинаковую длину. Чтобы в этом убедиться, следует сделать развертку, на которой лестница превратится в отрезок прямой. Для обеих башен угол наклона одинаков, башни имеют равную высоту. Значит, длины спрямленных лестниц равны.

2. Площадь треугольника.

Все высоты треугольника меньше 1. Может ли его площадь быть больше 10000 квадратных единиц?

Ответ: Может. Таким будет, например, равнобедренный треугольник, основание которого равно 80000, а высота к основанию равна 0.5.

3. Задача с узелками.

Положите на стол кусок веревки или тесьмы. А теперь возьмитесь руками за концы веревки и завяжите узел, не отпуская их. Можно ли это сделать?

Ответ: Решить задачу можно, если сначала скрестить руки (завязать из своих рук узел), потом взяться за концы веревки и расплести руки - перенести узел с рук на веревку.

Вот хитрая задача, если сможете решить эту задачу, не подглядывая в ответ, то вы рассуждаете лучше, чем многие очень умные люди.

4. Карандаши и треугольники.

Сложи из шести карандашей четыре равных треугольника так, чтобы сторона каждого треугольника была равна по длине одному карандашу.

Ответ: Надо построить из карандашей объемную конструкцию - пирамиду. Четыре треугольника - это основание и три боковых стороны пирамиды.

P.S. Никто ведь не утверждал, что построение надо делать на плоскости.

5. Кирпичи.

Имеется куча одинаковых кирпичей и линейка. Как, сделав всего один замер, узнать длину диагонали кирпича?

6. Куб и сфера.

На какое наибольшее число частей могут разделить пространство поверхности куба и сфера?

Ответ: Сфера и куб могут делить пространство на части четырех типов:

- часть, находящаяся как вне сферы, так и вне куба. Одна такая часть есть всегда;
- часть, находящаяся как внутри сферы, так и внутри куба. Если такая часть есть, она одна;
- части, находящиеся вне сферы, но внутри куба. Если такие части есть, то в каждую войдет, по крайней мере, один трехгранный угол куба, т.е. их не больше. чем вершин куба (8);
- части, находящиеся вне куба, но внутри сферы. Если куб и сфера пересекаются, то в каждой такой части есть часть грани куба и их число не больше числа граней куба (6).

Итак, число частей не больше, чем 1+1+8+6 = 16. Если шар касается всех ребер куба, то частей ровно 16.

Задачи мыслителей Древнего Востока

Задача взята из китайского трактата "Начала искусства вычисления", напечатанного в 1593 г. и содержащего ряд статей и задач по арифметике, алгебре и геометрии, причем некоторые вопросы заимствованы из трактата "Арифметика в девяти главах".

ЗАДАЧА 1: В середине квадратного озера со стороной 10 фунтов растет тростник, выходящий из воды на 1 фут. Если нагнуть тростник, вершина достигнет берега. Как глубоко озеро?

OTBET: Глубина озера - 12 футов. А как китайские ученные произвели вычисления, предоставляется выполнить самим читателем.

ЗАДАЧА 2:

Над озером тихим, с полфута размером,

Высится лотоса цвет.

Он рос одиноко. И ветер порывом

Отнес его в сторону. Нет

Больше цветка над водой.

Нашел же рыбак его ранней весной

В двух футах от места, где рос.

Итак, предложу я вопрос:

Как озеро вода здесь глубока?

Одна задача Архимеда об арбелосе

В своих задачах геометрией Архимед много внимания уделил изучению свойств фигуры, носящей название *арбелос*, или *скорняжный нож*. Это название фигура получила из-за сходства с очертаниями ножа, использовавшегося скорняками для разделки кож.

Если взять на прямой три последовательные точки *A, B* и *C* и построить три полуокружности с диаметрами *AB, BC* и *AC,* расположенные по одну сторону от этой прямой, то фигура, ограниченная этими полуокружностями, и является арбелосом.

(Задача Архимеда). Проведем в арбелосе через точку В прямую, перпендикулярную АС, и обозначим ее точку пересечения с большей полуокружностью через D. Рассмотрим две окружности, вписанные в два образовавшиеся криволинейных

треугольника. Первая касается отрезка BD, полуокружности AB и дуги DA. Вторая касается BD, полуокружностями BC и дуги DC. Докажите, что эти две вписанные окружности равны.

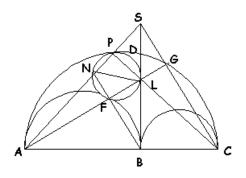
Решение Архимеда опиралось на одно простое свойство касающихся окружностей, которое мы называем *леммой Архимеда*.

Лемма Архимеда. Пусть прямая пересекает данную окружность в точках К и М. Рассмотрим произвольную окружность, касающуюся данной в точке Р, а прямой КМ в точке L. Тогда прямая PL проходит через середину одной из двух дуг КМ, на которые данная окружность разделена прямой КМ.

Решение Архимеда

Рассмотрим окружность, касающуюся BD в точке L, дуги AD — в точке P и полуокружности AB — в точке F. Согласно лемме, прямая PL проходит через точку C, а прямая FL — через A.

Проведем через *L* в построенной окружности диаметр *LN.* Углы *NPL* и *APC* — прямые (как опирающиеся на диаметр в соответствующей



окружности), поэтому точки P, N и A лежат на одной прямой. Точно так же на одной прямой лежат точки N, F и B. (Прямыми являются углы NFL и AFB.)Обозначим теперь через G точку пересечения AL с большей полуокружностью. Рассмотрим треугольник ALC. Высотами в нем являются LB, AP и CG. продолжим их до пересечения в одной точке, которую обозначим S. Из подобия треугольников SNL и SAB получим $\frac{NL}{AB} = \frac{NS}{AS}$. Но прямые NB и SC параллельны, так как они перпендикулярны AL. Значит, $\frac{NS}{AS} = \frac{BC}{AC}$. Итак, имеем $\frac{NL}{AB} = \frac{BC}{AC}$. Откуда следует, что $NL = \frac{AB*BS}{AC}$, при этом NL —

диаметр одной из окружностей, вписанных в части арбелоса. Понятно, что находя диаметр второй окружности, мы придем к тому же равенству.

ЛИТЕРАТУРА:

- 1. Выгодский М. Я "Справочник по элементарной математике" Москва "Наука" 1978
- 2. С.Н. Олехник, Ю.В. Нестеренко, М.К. Потапов "Старинные занимательные задачи" "Наука" 1985