ГАРАНТИИ ВНЕДРЕНИЯ НОВОЙ ТЕХНИКИ ПО ЭКСПУЛАТАЦИОННИМ ПАКАЗАТЕЛЯМ

Назаров Ортик Турсунович

приподователь джиззакский политехнический иститут.

Холикова Лола

студентка группы 521-22.

Изложены результаты обзора по определению экспулатационных показателей машыно-тракторных агрегатов, обоснована гарантии внедрения новой техники по их экспулатационным показателям.

Кльчевые слова: сцепка, крюк, мощность, орудия, радиус поворота, рицеп, ширина захвата. Для обоснования экспулатационных паказателей машинно-тракторных агрегатов изпользуются нижеследущие обшеизвестные формулы:

- 1. Масса топлива, израсходованная двигателем, $Q_{mon} = ju$, где j-плотност_топлива , г/см 3 .
 - 2. Массовый (часовой) расход топлива $G_{\tau = \frac{j_u}{T_{n'}}}$ где T_p -время работы двигателя.
- 3. Удельный расход топлива $g_{\rm e} = \frac{G \times 1000}{N_{e \rm H}}$, где Neн —номинальная мошность двигателя , кВт .
- 4. Рабочая скорость трактора $V_p = V_T (1 \frac{\delta}{100})$, где $V_T -$ теоретическая скорост трактора; δ —буксование ходового аппарата трактора , %.
- 5. Сила , затрачиваемая на передвижение трактора , кH, $P_f = 0.0098 \cdot G_{Tp} \cdot f_{Tp}$, где G_{Tp} эксплуатационная масса трактора; f_{Tp} -коеффициент сопротивления передвижению (качению) трактора .
- 6. Сила, затрачиваемая на преодоление подъема местности, кH, $P_a = 0,0098 \cdot G_{T_D} \cdot i$, где i-величина подъема местности, кH.
- 7. Максимальная тяговая (крюковая) машность трактора на данной передаче, квт, $N_{\kappa p}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = \frac{P_{kp} \cdot V_p}{3.6}$ где $P_{\kappa p}$ -номинальное тяговое усилие на крюке, кН.
- 8. Мощиность, затрачиваемая трактором на предоление подьема местности, $N_a = \frac{Pa \ Vp}{3..6}$.
 - 9. Тяговй КПД трактора $\eta_{\text{тяг}} = \frac{Nkp}{N}$.
 - 10. Удельный расход таплива на 1 кВт тяговой мощности $g_{\text{кр}} = \frac{G_{T} \cdot 100}{N_{\text{кр}}}$.
- 11. Рабочее тяговое сопротивление плуча при движении по ровной местности. $R_{nn} = k_o \cdot a \cdot B \cdot n = k_o \cdot a \cdot B_{nn}$, где B_{nn} -конструктивная ширина захвата пиуга, м; а-глубина

вспашки почвы, m; k_o -удельное сопротивление почвы, при вспмшке, $\kappa H/m^2$; б-конструктивная ширина захвата одного корпуса плуга, m; n-число корпусов плуга, mт;

- 12. Рабочее тяговое сопротивление сцепки на ровной местности $R_{\rm cu}$ = 0,0098 $G_{\rm cu}f_{\rm cu}$,
- где G_{cq} -эксплуатационная масса сцепки, кг; f_{cq} -коэффициент сопротивления передвижению сцепки.
- 13. Рабочее тяговое сопротивление прицепной машины или орудия на ровной местности $R_{\rm M} = k_{\rm M} \cdot B_{\rm M}$, где $K_{\rm M}$ -удельное тяговое сопротивление прицепной машины или орудия на ровной местности, кН/м; $B_{\rm M}$ -конструктивная ширина захвата машины (орудия), м.
- 14. Рабочее тяговое сопротивление пирицепной машины (орудия) на неровной местности $R_m^i = K_m \cdot B_m + 0,0098 G_m \cdot i$, где G_m -экисплуатационная масса одной машины (орудия), кг; і-величина подьема местности.
- 15. Тяговая (крюковая) мощностсь трактора затрачиваемая на тягу машин(орудий),

$$N_{Kp} = \frac{K_M BMVp}{3.6} = \frac{R_{m \cdot Vp}}{3.6}$$
.

- 16. Коеффицент использования тяговой мощности или тяговой силы трактора $\eta_u = \frac{R_m}{V_{kp}}$, где R_M -рабочее тяговое сопротивление прицепной машины на ровной местности; $P_{\kappa p}$ -номинальное тяговое усилие на крюке.
 - 17. Часовая производительность агрегата за 1 ч сменного времени
- $W_{\text{ч}} = 0,1 \cdot B_{\text{p}} \cdot V_{\text{p}} \cdot \tau$, где B_{p} -рабочая ширина захвата агрегата, м; V_{p} -рабочая скоростс движения агрегата, км/ч; τ -коеффициент использования времени смены. Рабочая ширина захвата агрегата, м, $B_{\text{p}} = B_{\text{k}} \cdot \beta$, где β коеффициент использования конуструктивной ширины захвата машины или орудия.
- 18. Сменная производительность агрегата, га / смену, W_{cm} =0,1· B_p · V_p · T_{cm} · τ , где T_{cm} -полное время смены(продольжительность смены),ч.
 - 19. Времия чистой работы агрегата за семну,ч, $T_p = T_{cm} \cdot \tau$
- 20. Расход топлива дивигателем за семну $Q_{cm}=G_p$ $T_p+G_x\cdot T_x+G_o$ T_o , где G_p -массовый расход топлива двигателем при дивижении агрегата, кг/ч; G_x -массовый расход топлива дивигателем при работе агрегата на холостых поворотах и заездах, кг/ч; G_o -массовый расход топлива дивигателем на остановках агрегата, кг/ч; T_x -времия, затрачиваемое на холостые повороты и заезды при работе на загонах, ч; T_o -времия, затрачиваемое на остановки агрегата за смену, ч.
- 21. Погектарный расход топлива $g_{ra} = \frac{Q_{cM}}{W_{cM}} = \frac{Q_{q}}{W_{q}}$, где Q_{q} -расхот топлива за час сменного времени, кг/ч.

- 22. Коеффициент рабочих ходов агрегата $\varphi = \frac{Sp}{Sp + Sx} = \frac{Vp \cdot Tp}{Vp \cdot Tp + Vx \cdot Tx}$ где S_p -суммарная длина работчих ходов агрегата, м; S_x -суммарная дилина холостых ходов агрегата, м; V_x -скорость холостого хода агрегата, км/г .
- 23. Суммарная дилина рабочих ходов агрегата $S_p = L_p \cdot n_p = L_p \frac{C}{Bp}$, где L_p -длина одного робочего хода агрегата, м; n_p -каличество робочих ходов агрегата на загоне; С-ширина зогона (поля), м; B_p -рабочая ширина захвата агрегата, м.
- 24. Длина всех холостых ходов агрегата привеспетлевом способе движеня $S_{6}^{x} = (c+4\cdot R_{\text{мин}})\frac{c}{2Bp}$, где $R_{\text{мин}}$ -минималбьний радиус поворота агрегара, м.
- 25. Длина всех холостых ходов агрегата на концах загона с петлевыми поворотами грушевидной формы $S_n^{\ x} = (6 \cdot R_{\text{мин}} + 2L) \frac{c}{R^n}$, где L-длина выезда агрегата .
- 26. Максимальная ширина захвата пирицепного широкозахватного агрегата, м, $B^{H}_{Makc} = \frac{P_{K}p}{Km}$, где P_{Kp} —наминальное тяговое сопротивление прицепной машины (орудия) новной местности .
- 27. Максимальная ширина захвата пахотного агрегата $B^{\text{пах}}_{\text{макс}} = \frac{P \kappa p}{K_0 a}$, где K_0 удельнос сапротивление почвы привспашке, к Hm^2 ; а-гулбина вспашки, м.
- 28. Число прицепных или навесных машин (орудий) в агрегате $\Pi_{\rm M} = \frac{B_{makc}^{nax}}{B_{\rm M}}$; $\Pi_{\rm K} = \frac{B_{makc}^{nax}}{B_{\rm K}}$, где $\Pi_{\rm K}$ –число корпусов плуга; $B_{\rm M}$ -конструктивная ширина захвата одной машины (орудия) м; $B_{\rm K}$ –канструктивная ширина захвата одного корпуса плуга, М.
- 29. Годовой экономичской эффекит от примения новой теҳники $Э_{re} = [(\Pi_6 \Pi_H) + \Delta Y] \cdot B_3$, где Π_6 , Π_H -удельное приведеныие затраты по базовому и новому бариантам соответственно, руб/га; ΔY удельний дополнительный эффект от изменения количества и качества продукции; B_3 -годовая наработка новой машины.

Если $W_H < W_{\delta}$ и новая машина используется в напряженыые периоды, то формула не учитывает всех потерь, связанных со снижением производительности и увеличением напряженности работ, которые в различных хозяйствах будут неодинаковы. Можно сказать, что экономический эффект в данном случае максимально возможный и не может служить гарантией к внедрению новой техники. обеспечить гарантированное внедрение, необходимо исходить эффекта,который минимального экономического не зависит ОТ условий экисплуатции.

Минимальний экономических эффект составит:

 $\exists_{\mathsf{гмин}} = \mathsf{P}_{\mathsf{H}} \cdot \mathsf{W}_{\mathsf{H}} \cdot \mathsf{T}_{\mathsf{H}\mathsf{\Pi}} - \mathsf{P}_{\mathsf{G}} \cdot \mathsf{W}_{\mathsf{G}} \cdot \mathsf{T}_{\mathsf{H}\mathsf{\Pi}} + \mathsf{Y}_{\mathsf{O}}(\mathsf{W}_{\mathsf{G}} - \mathsf{W}_{\mathsf{H}}) \mathsf{T}_{\mathsf{H}\mathsf{\Pi}} + [(\mathsf{\Pi}_{\mathsf{G}} - \mathsf{\Pi}_{\mathsf{H}}) + \Delta \mathsf{Y}]$ ($\mathsf{B}_{\mathsf{3}} - \mathsf{W}_{\mathsf{H}} \ \mathsf{T}_{\mathsf{H}\mathsf{\Pi}}$), где $\mathsf{P}_{\mathsf{H}} = \mathsf{Y}_{\mathsf{H}} - \mathsf{\Pi}_{\mathsf{H}}$, $\mathsf{P}_{\mathsf{G}} = \mathsf{Y}_{\mathsf{G}} - \mathsf{\Pi}_{\mathsf{G}} - \mathsf{Y}_{\mathsf{G}} - \mathsf{Y}_{\mathsf{G}}$ операции, виполненной новой и базавой машинами; Y_{H} , $\mathsf{Y}_{\mathsf{G}} - \mathsf{C}$ тоимость урожая при использовании новой и баговой машин соответственно руб/га; $\mathsf{Y}_{\mathsf{O}} - \mathsf{C}$ тоишость урожая без операции, виполняемой

новой или базовой техникой (машиной).С учетом уравнения (15) минимальний годовой эффект $9_{r, min} = 9_{r, p} - (W_{6} - W_{H}) (\Delta Y' - \Pi_{6}) T_{H\Pi}$, (17) где $\Delta Y' = Y_{6} - Y_{6}$

Полученное виражение имеет смысл не только при $W_6 > W_H$, так как в противном случае четко просматривается эффект от синиженя натряжености работ. Минимальный годовой экономчиской эффект сулужит паказателем гарантии внедрения новой техники (машины). При $\Theta_{\rm rmin} > 0$ машина будет внедряться в любом хозяйстве, так как этот эфект гарантирован независимо от условий ее применения .

СПИСОК ЛЕТЕРАТУРЫ:

- 1. Касенов Б.К. Сборник задач по механизатции обработки почвы. М, Высшая школа,1981;
- 2. Хробостов С.Н . Эксплуатация машинно трактопного парка. М., «Высшая школа» 1971;
- 3. Фортуна В.И., Миронюк С. К. Техналогия механизированных сельскохозяйственных работ М., «Агропромиздат», 1986;
- 4. Нармативно справочный материал для эканомичской оценки сельскохозяйственой техники М., ЦННИТЭИ, 1980;
- 5. Каплан И.Г. Показатель гарантироваыного эффекта от новой техника. «Техника в селском хозяйстве» N⁻ 4, 1989.