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ON SOME CHARACTERIZATION OF SUPERPARACOMPACTNESS,
STRONG PARACOMPACTNESS AND COMPLETE PARACOMPACTNESS

L.N. Tillabaev
Namangan State University, Namangan, Uzbekistan

In this paper, we study uniform analogs of complete paracompactness [1] strong
paracompactness [2], and superparacompactness [3].

Definition 1 (D.K.Musaev). (i) A star finite (finite-component) U -locally finite [4]
cover ! of a uniform space (X,U) is said to be uniformly star-finite (respectively, uniformly
finite-component); (i)

A — star-finite [3] (in particular, — finite -component [3]) U -locally finite cover of a
uniform space (X,U) is said to be uniformly — star-finite (respectively, uniformly — finite-
component); (iii)

A cover of a uniform space (X,U) wich can be represented as a countable family of
uniformly star-finite (uniformly finite-component) covers is said to be — uniformly star-
finite (respectively, — uniformly finite-component).

Proposition 1. If a uniformly space (X,U) is R -superparacompact (R -strong
paracompact, R-completely paracompact). Moreover, if X is a superparacompact Hausdorff
space (strongly paracompact Hausdorff space) and U_ is its universal uniformity, then the
uniform space (X,U ) is R —super paracompact (respectively,R -strongly paracompact).

Proposition 2. For a uniform space (X,U), the following conditions (al), (bl), (cl), and
(d1) are equivalent to conditions (a2), (b2), (c2), and (d2), respectively:(al) (X,U) is R -
paracompact; (a2) any finitely additive [4] open cover of (X,U) has a U -locally finite open
refinement; (b1l) (X,U) is R-completely paracompact; (b2) any finitely additive open cover of
(X,U) has a uniform — star-finite open weak refinement;(c1) R -strongly paracompact; (c2)
any finitely additive open cover of (X,U) has a uniform star-finite open refinement;(dl)
(X,U) 1s R -superparacompact; ( d2) any finitely additive open cover of (X,U) has a uniform
finite-component open refinement.

Theorem 1. For a uniform space (X,U) , the following conditions (al) and (bl) are
equivalent to conditions (a2), and (b2), respectively:(al) the space (X,U) is uniformlyR -
superparacompact; (a2) the space (X,U) is uniformlyR -paracompact and (X, u) is
superparacompact;(b1) the space (X,U) is uniformlyR -strongly paracompact; (b2) the space
(X,U) is uniformly R -paracompact and (X, u) is

strongly paracompact.

Theorem 2. Let(X,U) be uniform space and let bX be a compact Hausdorff extension of
X.Then the following conditions are equivalent: (a) (X,U) is R -superparacompact; (b) for
any compact space K  bX\X, there exists a U-locally finite disjoint open cover _ of (X,U)
which punctures the compact set K inbX . Proposition 3. Any uniformly zero-dimensional R -
paracompact space is R-super paracompact.
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