РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ПОЛИФОСФАТНЫХ ДОБАВОК ДЛЯ ПРОИЗВОДСТВА СИНТЕТИЧЕСКИХ МОЮЩИХ СРЕДСТВ И ЖИДКИХ КОМПЛЕКИСНЫХ УДОБРЕНИЯ

Мирзамудродова Д Д Эркаева Н.А

Для получения триполифосфата натрия использовалась экстракционная фосфорная кислота из фосфоритов Центральных Кызылкумов дигидратным методом.

Исследование химического состава экстракционной фосфорной кислоты спектральным анализом методом МС индукционно-связанной плазмы показало, что в ЭФК содержится 14,0 % P2O5, количество SO3 достигает 1,9 %. Наличие оксидов MgO, Fe2O3 и Al2O3 незначительно и составляет 0,35; 0,86 и 2,09 % соответственно.

Наличие фтора в кислоте определяли при помощи иономера с селективными электродом «F-».

Химический состав экстракционной фосфорной кислоты, полученной из фосфоритов Центральных Кызылкумов, (масс.%): P2O5 -14; SO3 -1,9; CaO -0,15; MgO -0,35; Fe2O3 -0,86; Al2O3 -0,71; SiO2 - 0,2; As -0,000325; Pb-0,000013; F-1,21.

В ЭФК имеются ряд ядовитых примесей, наличие которых недопустимо для производства фосфатов. Количество As – 0,000325 %; Pb - 0,000013%; F –1,21%.

С целью очистки от соединений фтора к ЭФК (10 л) добавляли фосфорит Центральных Кызылкумов в количестве 250 г. Химический состав фосфорита определяли методом индукционно-связанной плазмы, наличие фтора - при помощи иономера с селективными электродом «F-».

Химический состав фосфорита Центральных Кызылкумов, используемого для получения ЭФК, (масс.%): P2O5-10; CaO -51; MgO-0,42; Fe2O3-2,09; Al2O3 -2,36; SiO2-1,07; As-0,00073; Pb-0,0002425; F-2,0.

Кислота содержит 1,9% SO3. Наличие соединений серы также недопустимо в кислоте, поэтому в экстракционную фосфорную кислоту, полученную из фосфоритов Центральных Кызылкумов (10 л), добавляли кальцинированную соду в количестве 156 г.

Синтезированный раствор перемешивали В течение 2 часов при 70°C. температуре После вышеуказанных стадий очистки, раствор отфильтровывали и далее анализировали изменение химического состава фосфорной кислоты методом индукционно-связанной плазмы; наличие фтора определяли при помощи иономера с селективными электродом «F-».

Химический состав экстракционной фосфорной кислоты из фосфоритов Центральных Кызылкумов, полученной после очистки (масс.%): P2O5-23; SO30,04; CaO-0,9; MgO-0,42; Fe2O3-1,2; Al2O3-0,72; SiO2-0,03; As-0,00019; Pb-2,3•10-6; F-0,2:

После очистки содержание основного компонента (Р2О5) в растворе значительно увеличилось до 23 %. Содержание фтора уменьшилось в 6 раз (было 1,21% - стало 0,2%); содержание оксида серы уменьшилось почти в 10 раз (было 1,9% - стало 0,04%). Это говорит о том, что достигнута высокая степень очистки:

от соединений фтора: xF = = 84%;

от серосодержащих соединений: xSO3 = = 98%.

Данный раствор после очистки от соединений сульфатов и фтора, может быть в дальнейшем использован в технологии получения триполифосфата натрия.

С целью повышения содержания основного компонента в готовом продукте полученный раствор после разделения на три части упаривали до трёх концентраций: 40%, 50% и 55% в расчете на P2O5.

После процесса упаривания для определения химического состава растворы анализировали методом индукционно-связанной плазмы и при помощи иономера с селективными электродом.

Полученные данные приведены в таблице 1.

Таблица 1

Химический состав концентрированной экстракционной фосфорной кислоты

	Концентрация очищенной ЭФК, %			
Компоненты	40	50	55	
	Содержание компонентов, масс.%			
SO ₃	0,02	0,015	0,05	
CaO	0,27	0,76	0,92	
MgO	0,83	1,0	1,35	
Fe ₂ O ₃	1,4	2,0	2,27	
Al ₂ O ₃	1,55	2,1	2,27	
SiO ₂	5,136·10 ⁻³	4,5·10-3	2,8·10-3	
As	1,7·10-4	2,5·10-4	2,7·10-4	
Pb	8,7·10-6	12·10-6	13 · 10 - 6	
F	<0,001	<0,001	<0,001	

Как видно из таблицы 1, содержание основного вещества (Р2О5) увеличилось. Так, если в исходной экстракционной фосфорной кислоте, полученной из фосфоритов Центральных Кызылкумов, содержание Р2О5 достигало 19%, то в частично очищенной и упаренной ЭФК, этот показатель увеличился до 40 - 55%.

Содержание серосодержащих соединений значительно уменьшилось. Количество SO3 достигло 0,02-0,05% в зависимости от концентрации упаренных растворов.

Содержание фтора, как видно из таблицы 1, во всех концентрированных ЭФК значительно уменьшилось и не превышает предельно допустимую концентрацию.

Содержание свинца с увеличением концентрации ЭФК увеличивается незначительно.

Важное значение в технологических процессах имеет транспортировка промежуточных продуктов. С этой целью были изучены реологические свойства упаренных растворов экстракционной фосфорной кислоты из фосфоритов Центральных Кызылкумов.

Было изучено влияние температуры в пределах от 20°C до 60°C на свойства упаренных кислот.

Реологические свойства упаренных растворов показаны в таблице 2.

Таблица 2

Зависимость плотности от температуры и концентрации упаренных растворов, г/см3

Температура,°С	Концентрация очищенной ЭФК, %			Концентрация очищенной ЭФК, %	
	40	50	55		
20	1,49	1,70	1,85		
40	1,48	1,69	1,84		
60	1,47	1,68	1,82		

Изучение реологических свойств упаренных растворов при различных температурах показало, что с ростом их концентрации плотность растворов увеличивается. Так, например, если при температуре 20°С 40%-ный раствор имеет плотность 1,49 г/см3, то повышение концентрации растворов до 55% привело к ее увеличению до 1,85 г/см3. Такая же закономерность наблюдается и при увеличении температуры до 40 и 60°С. Установлено, что с ростом температуры плотность вышеуказанных растворов уменьшается. Так, например, при 20°С 40%-ный раствор имеет плотность 1,49 г/см3, а с увеличением температуры до 60°С плотность данного раствора уменьшилась до 1,47 г/см3.

Наличие в готовом продукте примесей тяжелых металлов и полуторных оксидов также недопустимо. С целью очистки ЭФК от соединений тяжелых металлов и полуторных оксидов упаренные до 40, 50, 55% в пересчете на P2O5 кислоты аммонизировались до рН 3,2–3,5 газообразным аммиаком.

После процесса аммонизации полученные плавы полифосфата аммония (ПФА) анализировали методом индукционно-связанной плазмы и при помощи иономера с селективными электродом «F-». Полученные данные приведены в таблице 3.

Как видно из таблицы 3, количество основного компонента (Р2О5) после процесса аммонизации увеличилось до 55,61; 58,53 и 61,93% в зависимости от концентрации плавов, полученных на основе 40, 50 и 55% ный экстракционной фосфорной кислоты соответственно.

Таблица 3

Химический состав плавов ПФА после процесса аммонизации

	Концентрация очищенной ЭФК, %				
Компоненты	40	50	55		
	Содержание компонентов в плавах, масс.%				
P ₂ O ₅₀₆	55,61	58,53	61,93		
P ₂ O _{5орто.}	47,81	51,48	46,20		
P ₂ O _{5поли.}	1,79	7,02	15,73		
P ₂ O _{5поли.} /	3,6	12	25,4		
P ₂ O ₅₀₆	3,0	12	23,4		
N	8,26	8,60	8,30		
SO3	0,1	0,14	0,21		
CaO	0,12	0,13	0,15		
MgO	0,64	0,67	0,86		
Fe ₂ O ₃	0,34	0,55	1,11		
Al ₂ O ₃	0,53	1,0	1,56		
SiO ₂	8,96·10 ⁻⁴	0,00164	0,018		
As	1,3·10-4	1,4·10-4	1,54·10-4		
Pb	5,98·10 ⁻⁶	0,66·10-5	8,6·10-6		
F	-	-	-		

Значительно уменьшилось количество примесей в растворах различной концентрации. Количество MgO в 40%-ном растворе уменьшилось до 0,64%, Fe2O3 - до 0,34%, Al2O3 – до 0,53%, Pb – до 5,98•10-6.

То же самое можно наблюдать и в плавах на основе 50 и 55-ной ЭФК. Количество MgO в плаве на основе 50-ной фосфорной кислоты уменьшилось до 0,67%, Fe2O3 - до 0,55%, Al2O3 – до 1,0%, Pb – до 0,66•10-5.

Количество MgO в плаве на основе 55%-ной фосфорной кислоты уменьшилось до 0,86%, Fe2O3 - до 1,11%, Al2O3 – до 1,56%, Pb – до 8,6•1O-6.

Количество Nобщ. с увеличением концентрации также увеличивается и достигает 8,26; 8,60; 8,30 % в зависимости от концентрации плавов, полученных на основе 40%-й, 50%-й и 55%-й экстракционной фосфорной кислоты соответственно.

Таким образом, в результате аммонизации упаренной экстракционной фосфорной кислоты были получены соединения с содержанием вредных примесей в границах предельно допустимой концентрации.

После аммонизации ЭФК образовались кристаллы, растворимость которых изучалась при температуре 80°С. С этой целью растворением веществ в воде были приготовлены их насыщенные растворы.

Образовавшуюся суспензию разделяли фильтрованием на твердую и жидкую фазы. Твердая и жидкая фазы исследовалась на содержание в них Р2О5общ., Р2О5орто. и фтора. Полученные данные приведены в таблице 4.

Из таблицы 4 видно, что с увеличение концентрации упаренных растворов количество твердой фазе уменшается ,а содержание Р2О5общ. уменьшается а Р2О5орто. же, наоборот относительно увеличивается. Так, при увеличении концентрации упаренного раствора с 40 до 55%, количество Р2О5 общ. увеличивается почти в 1,33 раза. Так у 40%-ного упаренного раствора оно равно 13,6, а у 50%-ного 10,2, т.е. уменьшается на 3,4%.

На рис.1 показана линия растворимости аммонийных солей в зависимости от концентрации исходной очищенной экстракционной фосфорной кислоты. Необходимо отметить, что с увеличением концентрации очищенной экстракционной фосфорной кислоты количество твердой фазы уменьшается.

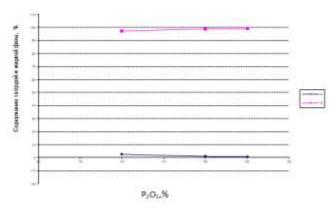


Рис 1. Растворимость аммонизированных солей в зависимости от концентрации очищенной экстракционной фосфорной кислоты:

а- содержание твердой фазы в растворе; б- содержание жидкой фазы в растворе.

Таблица 4 Химический состав твердой фазы ПФА после растворения аммонийных солей

Компоненты	Конц	Концентрация очищенной ЭФК, %		
P ₂ O ₅	40 (1)	50 (2)	55 (3)	
	Содержание компонентов в твердой фазы, масс.			
SO ₃	2,55	2,47	1,63	
CaO	0,16	0,11		
MgO	0,35	74		
Fe ₂ O ₃	0,022	0,025		
Al ₂ O ₃	0,06	0,15	0,055	
SiO ₂	2,45	2,1	1,62	
As		3		
Pb	9,4.10-4	1,13.10-5		
F	< 0.001	<0,001	< 0,001	

С целью определения химического состава твердой фазы образцы также анализировали методом индукционно-связанной плазмы. Полученные данные приведены в таблице 4.

Хелатная способности полифосфатов используют в технологии производство жидких комплекисных удобрения для предотврашения образования осадков железа магния и других элементов,а также в поизводстьво синтетических моюших средств (СМС).

Таким образом в результате был получен полифосфата аммония, отвечающий требованиям, предъявляемым к СМС, т.е. содержание вредных примесей не превышает предельно допустимые концентрации.

При исследовании свойств веществ и разработке специфической технологии методы идентификации целевых, промежуточных и конечных веществ на каждой стадии и в целом по технологической схеме приобретают весьма важное значение.

Среди новых методов исследования необходимо отметить метод ИКспектроскопии, который на протяжении многих лет применяется в неорганической технологии. Поэтому твердую фазу анализировали на ИКспектрометре «NICOLET Magna 560 IR».

На рис. 2 представлены ИК-спектры твердой фазы растворенных фосфатов аммония.

В ИК-спектрах твердой фазы растворенного фосфата аммония, приготовленного на основе 40%-ной экстракционной фосфорной кислоты (рис. 2), наблюдаются следующие полосы поглощения: 1091, 1403, 1645, 2372 см-1.

Полоса пропускания 1091 см-1 указывает на наличие небольшого количества ионов HPO42-.

Полоса 1403 см-1 может быть отнесена к деформационным колебаниям группы РОН.

Полоса 1645 см-1 относится к деформационным колебаниям воды, но поскольку это исследуемый образец находится в твердофазном состоянии и количество влаги в нем незначительно, поэтому интенсивность пиков не велика.

В ИК-спектрах твердой фазы растворенного фосфата аммония, приготовленного на основе 50%-й экстракционной фосфорной кислоты (рис. 2), наблюдаются следующие полосы поглощения: 1112, 1402, 1638, 2375 см-1. В отличие от предыдущего интенсивность перечисленных полос поглощения значительно выше. Это свидетельствует об увеличении в исследуемом образце количества ионов НРО42- и РОН соответственно.

Как и в предыдущих примерах, в ИК-спектрах твердой фазы растворенного фосфата аммония, приготовленного на основе 55%-й экстракционной фосфорной кислоты (рис. 2), наблюдаются полосы поглощения в областях 1401, 1654, 2366 см-1, интенсивность которых увеличилась с повышением концентрации исходной ЭФК.

В отличие от предыдущих, в данном случае обнаружена полоса пропускания 756 см-1, относящаяся к деформационном колебаниям иона H2PO4-.

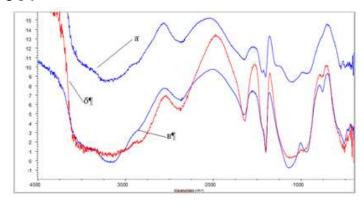


Рис. 2. ИК –спектры твердой фазы, полученной из плавов различных концентраций: а – 40%; б – 50%; в – 55%.

Во всех образцах ПФА имеются валентные колебания иона Р2074-.

Из сравнения спектров фосфатов аммония следует, что все они содержат анионы H2PO4-, HPO42-, PO43-, P2O74-.

Полосу 1122 см-1 можно отнести к валентным колебаниям иона РЗО105-.

Полоса 1686 см-1 относится к деформационным колебаниям воды.

Микроскопический анализ применяют для прямого и косвенного исследования самых различных процессов. Наиболее часто его используют для изучения формы и размеров кристаллов; процессов роста кристаллов и их разрушения, идентификации минералов путем измерения их оптических констант, установления некоторых кристаллохимических особенностей строения кристаллов, фазовых превращений в веществах, процессов диффузии и т.д. Полученные продукты рассматривались под микроскопом при увеличении х1000 и х4000.

Микроскопический и рентгенографичиский анализ твердой фазы на основе плавов, полученных из экстракционной фосфорной кислоты различной концентрации, показал, что с увеличением концентраций исходной ЭФК, структура кристаллов меняется и переходит от кристаллического в аморфную форму. Это говорит о том, что с увеличением концентрации также увеличивается наличие полифосфатов аммония.

ИСПОЛЬЗОВАННЫЕ ЛИТЕРАТУРЫ:

- 1.Позин М.Е. Технология минеральных солей.Л.,Химия,1970.Ч.2.
- 2.Продан Е.А.,Продан Л.И.,Ермоленко Н.Ф.Триполифосфаты и их применение.Минск,Наука и техника,1969.
 - 3.Штюпель Г. Синтетические моющие средства.М.,Госхимиздат.1960.