BIRINCHI TARTIBLI ODDIY DIFFERENSIAL TENGLAMANING TAXMINIY YECHIMI UCHUN KO'P BOSQICHLI PSEVDOSPEKTRAL USULI

BIRINCHI TARTIBLI ODDIY DIFFERENSIAL TENGLAMANING TAXMINIY YECHIMI UCHUN KO'P BOSQICHLI PSEVDOSPEKTRAL USULI

Authors

  • Qo’ldosheva M.N Buxoro Davlat Universiteti

Keywords:

Chebishev polinomlari, Gauss-Lobatto to‘plamlari, Spektral usul, Chebishev matritsasi.

Abstract

O‘zgaruvchan koeffitsientli va boshlang‘ich (chegara) shartlarga ega oddiy differensial tenglamalarni echish uchun chiziqli algebraik tenglamalar tizimini qurishga yangi yondashuv matritsalar strukturasini sezilarli darajada soddalashtirish, uni diagonal shaklga keltirish imkonini beradi. Tizimning yechimi tanlangan kolokatsiya tarmog'idagi Chebishev ko'phadlari qiymatlari matritsasi kollokatsiya nuqtalarida berilgan hosilani tavsiflovchi funktsiya qiymatlari vektoriga ko'paytiriladi. Olingan vektorni ikki diagonali spektral matritsaga keyingi ko'paytirish, Chebishev differentsial matritsasiga nisbatan "teskari" birinchisidan tashqari, qidirilayotgan yechimning barcha kengayish koeffitsientlarini beradi. Ushbu birinchi koeffitsient ikkinchi bosqichda ma'lum bir boshlang'ich (va/yoki chegara) sharti asosida aniqlanadi. Yondashuvning yangiligi birinchi navbatda kelajakdagi yechimning hosilasini interpolyatsiya qilish (kollokatsiya)ning barqaror va hisoblash jihatdan sodda usulidan foydalangan holda, differentsial tenglamani qanoatlantiradigan funktsiyalar sinfini (to'plamini) tanlashdir. Keyin kelajakdagi yechimning kengayish koeffitsientlari (birinchisidan tashqari) integratsiya matritsasidan foydalangan holda lotinning hisoblangan kengayish koeffitsientlari nuqtai nazaridan aniqlanadi. Nihoyat, bu yechimlar to'plamidan faqat berilgan boshlang'ich shartlarga mos keladiganlar tanlab olinadi.

References

S. Chandrasekaran, M. Gu, “Fast and stable algorithms for banded plus semiseparable systems of linear equations”, SIAM Journal on Matrix Analysis and Applications, №2, 373–384, 2003

Konstantin P., Dmitry S., Ali Weddeye Hissein, “Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order”// Discrete & Continuous Models & Applied Computational Science, 30 (2) 127–138, 2022

Abdirashidov A. va boshqalar, “Birinchi tartibli oddiy differensial tenglamalarni bir qadamli sonli usullar yordamida yechish”, uslubiy ko‘rsatma, SamDU nashri, 2018.

Downloads

Published

2023-02-01

How to Cite

M.N , Q. . (2023). BIRINCHI TARTIBLI ODDIY DIFFERENSIAL TENGLAMANING TAXMINIY YECHIMI UCHUN KO’P BOSQICHLI PSEVDOSPEKTRAL USULI. Education News: Exploring the 21st Century, 1(7), 239–243. Retrieved from https://nauchniyimpuls.ru/index.php/noiv/article/view/5197
Loading...